numpy and PIL
実際に画像に適用してみた所,1024x1024 の大きさの画像では処理に 6 秒程度,消費するメモリサイズは230MBなのだが,3840x2160の画像を利用すると,2.3GBのメモリと263秒の時間がかかることがわかった.この2つの解像度はpixel の数で言えば 8 倍程度で,メモリの処理が比例しているのは良いとしても,処理の時間がかかりすぎる.また,メモリの消費量自体も多すぎる.私はプログラム中で3つのバッファを使っているだけであり,1024x1024の場合には 10 MB程度,3840x2160 の場合には,72MB程度と思っていた.しかし,30倍ものメモリが消費されている.
プロファイルの結果,最内ループの tuple の生成と abs 関数にほとんどの時間がかかっていることがわかった.そこで,この部分を numpy で書くことにした.結果を以下に示す.Intel Core i7-2720 2.20GHz Linux(Kubuntu 12.10, kernel 3.5.0-27), Python 2.7 における結果である.
- native 230MB, 6.0 seconds for 1024x1024 image
- numpy 110 MB, 0.21 second for 1024x1024 image
- native 2300MB, 263 seconds for 3840x2160 image
- numpy 320 MB, 1.18 second for 3840x2160 image
計算速度は 30 倍から200倍に, メモリサイズも 50% から 15% の消費量と激減している.実は最初の実装では倍程度にしか高速化できなかったので,私は多少失望したのであるが,profile した結果,非0の要素をカウントするための sum関数がほとんどの時間を占めていることに気がついた.この sum 関数は pythonのbuildin のもので,おそらく numpy の data 構造から毎回値を取り出しては計算しているのであろう.これを numpy.sum に変更した所,ほどんどの時間を占めていた sum 関数の消費時間が profile ではほぼ 0 になり,200倍の高速化が達成された.これは matlabに似ている.(実際,numpy は matlab の Python portであるが,いかに性能を出すかでも似ているという意味である.)
ImgCompNumpy.py code
Comments
Post a Comment