単純な組合せを生成することは前回で述べた.しかし,私の仕事では,GPU という高速ではあるが,メモリサイズが小さい計算機を使う必要がある.ここでの data size は GB の単位であり,64 GB とか 512 GB というのは現在のところ,一台の GPU には収まらない.512 GBは我々の使っている一台の計算機の実メモリにも収まらない.そこで,何十台かの計算機に複数の GPU を搭載して,それを協調して使うわけである.ほとんど全ての我々のクライアントは計算機の台数と性能の関係についての情報を要求する.それは我々のクライアントは特定の問題を解く必要があり,そのためには何台の計算機と何台の GPU を購入する必要があるかを知りたいためである.したがって,計算機を何台使ったかについてプログラムのデータ処理のスループット性能がどうかを見たい.そこで,計算機の台数を新たなパラメータとする. data_size_list = [ 5, 64, 512, ] screen_resolution_list = [ '2560x1440', '3840x2160', ] node_count_list = [ 1, 2, 4, 8, 16, 32, 64, ] しかし,データがメモリに収まらなければ遅いことは確実にわかっているので,テストに際しては計算機の台数は data size によって変化させたい.ループの場合には,不要なものを filter out するということが簡単に思いつく.以下のようなプログラムになるだろう. for d in data_size_list: for s in screen_resolution_list: for n in node_count_list: # FILTER: filter some cases. # assume one node can handle # 64G, but not more if (n * 64 < d): continue item_list = [ d, s, n, ] comb_list.append(it...